MMMPlotSuite#

class pymc_marketing.mmm.plot.MMMPlotSuite(idata)[source]#

Media Mix Model Plot Suite.

Provides methods for visualizing the posterior predictive distribution, contributions over time, and saturation curves for a Media Mix Model.

Methods

MMMPlotSuite.__init__(idata)

MMMPlotSuite.allocated_contribution_by_channel_over_time(samples)

Plot the allocated contribution by channel with uncertainty intervals.

MMMPlotSuite.budget_allocation(samples[, ...])

Plot the budget allocation and channel contributions.

MMMPlotSuite.channel_contribution_share_hdi([...])

Plot the share of channel contributions in a forest plot.

MMMPlotSuite.channel_parameter(param_name[, ...])

Plot the posterior distribution of a channel parameter using violin plots.

MMMPlotSuite.contributions_over_time(var[, ...])

Plot the time-series contributions for each variable in var.

MMMPlotSuite.cv_crps(results[, dims])

Plot CRPS scores for train and test sets across CV splits.

MMMPlotSuite.cv_predictions(results[, dims])

Plot posterior predictive predictions across CV folds.

MMMPlotSuite.marginal_curve([hdi_prob, ax, ...])

Plot precomputed marginal effects stored under idata.sensitivity_analysis['marginal_effects'].

MMMPlotSuite.param_stability(results, parameter)

Plot parameter stability across CV iterations.

MMMPlotSuite.posterior_distribution(var[, ...])

Plot the posterior distribution of a variable across a specified dimension.

MMMPlotSuite.posterior_predictive([var, ...])

Plot time series from the posterior predictive distribution.

MMMPlotSuite.prior_predictive([var, idata, ...])

Plot time series from the posterior predictive distribution.

MMMPlotSuite.prior_vs_posterior(var[, ...])

Plot the prior vs posterior distribution for a variable across a dimension.

MMMPlotSuite.residuals_over_time([hdi_prob])

Plot residuals over time by taking the difference between true values and predicted.

MMMPlotSuite.residuals_posterior_distribution([...])

Plot the posterior distribution of residuals.

MMMPlotSuite.saturation_curves(curve[, ...])

Overlay saturation‑curve scatter‑plots with posterior‑predictive sample curves and HDI bands.

MMMPlotSuite.saturation_curves_scatter([...])

Plot scatter plots of channel contributions vs. channel data.

MMMPlotSuite.saturation_scatterplot([...])

Plot the saturation curves for each channel.

MMMPlotSuite.sensitivity_analysis([...])

Plot sensitivity analysis results.

MMMPlotSuite.uplift_curve([hdi_prob, ax, ...])

Plot precomputed uplift curves stored under idata.sensitivity_analysis['uplift_curve'].

MMMPlotSuite.waterfall_components_decomposition([...])

Create a waterfall plot showing the decomposition of the target into its components.