NestedLogit.fit#
- NestedLogit.fit(choice_df=None, utility_equations=None, progressbar=None, random_seed=None, **kwargs)[source]#
Fit the discrete choice model.
- Parameters:
- choice_df
pd.DataFrame, optional New choice data. If None, uses data from initialization.
- utility_equations
list[str], optional New utility equations. If None, uses equations from initialization.
- progressbarbool, optional
Show progress bar during sampling
- random_seed
RandomState, optional Random seed for reproducibility
- **kwargs
Additional arguments passed to pm.sample()
- choice_df
- Returns:
az.InferenceDataFitted model with posterior samples