MMMSummaryFactory.contributions#
- MMMSummaryFactory.contributions(hdi_probs=None, component='channel', frequency=None, output_format=None)[source]#
Create contribution summary DataFrame.
Computes mean, median, and HDI bounds for contribution samples for the specified component type.
- Parameters:
- hdi_probssequence of
float, optional HDI probability levels (default: uses factory default)
- component{“channel”, “control”, “seasonality”, “baseline”}, default “channel”
Which contribution component to summarize
- frequency{“original”, “weekly”, “monthly”, “quarterly”, “yearly”, “all_time”}, optional
Time aggregation period (default: None, no aggregation)
- output_format{“pandas”, “polars”}, optional
Output DataFrame format (default: uses factory default)
- hdi_probssequence of
- Returns:
pd.DataFrameorpl.DataFrameSummary DataFrame with columns:
date: Time index
channel/control: Component identifier
mean: Mean contribution
median: Median contribution
abs_error_{prob}_lower: HDI lower bound for each prob
abs_error_{prob}_upper: HDI upper bound for each prob
Notes
Expects validated data. Call
data.validate_or_raise()if you’ve modified the underlying idata before calling this method.Examples
>>> df = mmm.summary.contributions() >>> df = mmm.summary.contributions(component="control") >>> df = mmm.summary.contributions(frequency="monthly", hdi_probs=[0.80, 0.94])