MMMSummaryFactory.posterior_predictive#
- MMMSummaryFactory.posterior_predictive(hdi_probs=None, frequency=None, output_format=None)[source]#
Create posterior predictive summary DataFrame.
Computes mean, median, and HDI bounds for posterior predictive samples, along with observed values for comparison.
- Parameters:
- hdi_probssequence of
float, optional HDI probability levels (default: uses factory default)
- frequency{“original”, “weekly”, “monthly”, “quarterly”, “yearly”, “all_time”}, optional
Time aggregation period (default: None, no aggregation)
- output_format{“pandas”, “polars”}, optional
Output DataFrame format (default: uses factory default)
- hdi_probssequence of
- Returns:
pd.DataFrameorpl.DataFrameSummary DataFrame with columns:
date: Time index
mean: Mean of posterior predictive samples
median: Median of posterior predictive samples
observed: Observed target values
abs_error_{prob}_lower: HDI lower bound for each prob
abs_error_{prob}_upper: HDI upper bound for each prob
Examples
>>> df = mmm.summary.posterior_predictive() >>> df = mmm.summary.posterior_predictive(frequency="monthly") >>> df = mmm.summary.posterior_predictive(hdi_probs=[0.80, 0.94])