MMMSummaryFactory.roas#
- MMMSummaryFactory.roas(hdi_probs=None, frequency=None, output_format=None)[source]#
Create ROAS (Return on Ad Spend) summary DataFrame.
Computes ROAS = contribution / spend for each channel with mean, median, and HDI bounds.
- Parameters:
- hdi_probssequence of
float, optional HDI probability levels (default: uses factory default)
- frequency{“original”, “weekly”, “monthly”, “quarterly”, “yearly”, “all_time”}, optional
Time aggregation period (default: None, no aggregation)
- output_format{“pandas”, “polars”}, optional
Output DataFrame format (default: uses factory default)
- hdi_probssequence of
- Returns:
pd.DataFrameorpl.DataFrameSummary DataFrame with columns:
date: Time index
channel: Channel name
mean: Mean ROAS
median: Median ROAS
abs_error_{prob}_lower: HDI lower bound for each prob
abs_error_{prob}_upper: HDI upper bound for each prob
Examples
>>> df = mmm.summary.roas() >>> df = mmm.summary.roas(frequency="monthly") >>> df = mmm.summary.roas(hdi_probs=[0.80, 0.94])