MMMSummaryFactory.total_contribution#
- MMMSummaryFactory.total_contribution(hdi_probs=None, frequency=None, output_format=None)[source]#
Create total contribution summary (all effects combined).
Summarizes contributions by component type (channel, control, etc.), summing across individual components within each type.
- Parameters:
- hdi_probssequence of
float, optional HDI probability levels (default: uses factory default)
- frequency{“original”, “weekly”, “monthly”, “quarterly”, “yearly”, “all_time”}, optional
Time aggregation period (default: None, no aggregation)
- output_format{“pandas”, “polars”}, optional
Output DataFrame format (default: uses factory default)
- hdi_probssequence of
- Returns:
pd.DataFrameorpl.DataFrameSummary DataFrame with columns:
date: Time index
component: Effect type (“channel”, “control”, “seasonality”, “baseline”)
mean: Mean total contribution
median: Median total contribution
abs_error_{prob}_lower: HDI lower bound for each prob
abs_error_{prob}_upper: HDI upper bound for each prob
See also
contributionsFor per-channel/control contributions
Examples
>>> df = mmm.summary.total_contribution() >>> df = mmm.summary.total_contribution(frequency="monthly") >>> df = mmm.summary.total_contribution(hdi_probs=[0.80, 0.94])